Page 50 - og_7den_8e_Mat
P. 50

CEBİRSEL İFADELER

                                                                           ÖZET KONU TEKRARI


                ♦ Cebirsel İfadelerin Değerini Hesaplama
                Bir cebirsel ifadede değişken yerine sayılar yazılabilir.

             2)
                         Cebirsel İfade             Değişken Değeri                Sonuç

                            3x +4                       x = 3                    3·3 + 4 = 13

                          7x –2y – 4                  x = 1, y = –1         7·1 – 2·(–1)–4 = 7+2–4 =5

                            6x +10                      x = 0            a)


                          12 – 7a –5b                 a =2, b = –2       b)

                       18x – 15y – 6z +1            x = 1, y = 2, z = 3  c)



                ♦ Cebirsel İfadelerde Toplama ve Çıkarma İşlemi

                Cebirsel ifadelerle toplama ve çıkarma işlemleri benzer terimler arasında yapılır.

             3)    5a – 2a = 3a           4x – 5 + 6x = 10x – 5        3 – 2x + 4 – 5x = 7 – 7x

             a)   10x – 9x =             b) 2y – 4 + 5y =             c) 8 – 4a + 1 – 2a =





             ç)   20m – m =              d) 10n + 1 – 4n =            e) –2 + 3k + 4 – k =




                                                        2
                                                     2
                                              2
                                                                             2
                                                                         2
                                                           2
                   2
                          2
             f)   4x  – 7 +9x  =         g) 10a  + 100b  –a  –b  =     ğ) k  – 9k  + 7k =
                ♦ Bir Doğal Sayı İle Bir Cebirsel İfadenin Çarpımı
                Bir doğal sayı bir cebirsel ifade ile çarpılırken; cebirsel ifadenin bütün terimleri ile tek tek çarpılır.
             4)   2·(x + 4) = 2x + 8      3 · (2 – k + x) = 6 – 3k + 3x     –(3 – 2x) = –3 + 2x

             a)   3 · (x – 5) =          b) 4 · (5 + a + b) =         c) –(x + 4) =





             ç)   (3a – 2) · 4 =         d) –3 · (x + 2y – 1) =       e) –(–7x – 4) =





                                                       1
             f)   10 · (–4x) =           g) –2 · (3 – 2x –   ) =      ğ) –(–x + 0,1) =
                                                       2
                                                                                                   ©

                                                                                                  49
   45   46   47   48   49   50   51   52   53   54   55