Page 425 - 8_Snf Tane Tane Matematik
P. 425
BÖLÜM
1
2
2
Basit Olayların Olma Olasılığı (syf:179) Cebirsel İfadeleri Çarpma (syf:199) (m – 4) + 16 = m – 8m + 32
1. 5 , 4 1. 12x + 24 24m + 48 –6m – 9 b – 9 = (b + 9) (b – 9)
2
2
9 9 5. 2
2. a = 15 – (7 + 5) = 3’tür. 8x + 12 –12k + 2 28x – 14 x – 36 = (x + 6) (x – 6)
2
2
2
2
(x – 4) = x – 8x + 16
2
2
3. 1 , 1 , 1 , 1 , 1, 0 16x + 40 –63k – 35 2x + 6x + 10
2
2
2
6 2 2 2 (2x + y) –y = 4x + 4xy
4. 1 , 2 , 3 , 1 , 1 2. 6x 2 8m 2 –18k 2 6. (a + b) = a + 2ab + b 2
2
2
2 5 10 5 10
2
2
5. 3 = 15 ise 15 kız öğrenci vardır. –6ab –32m 72m 64 = a + b + 2 . 10
5 25 2 3 2 44 = a + b 2
2
Erkek öğrenci = 25 – 15 = 10’dur. –16a 30n –3x 7. 2 2
6. 13 , 13 70a 2 –56b² –6b 3 a – b = (a + b) . (a – b)
48 96 3. 24 = 8 . (a – b)
7. 3 = 15 (15 tanesi) 2x + 12x 6y – 15y (a – b) = 3’tür.
2
2
5 25 2 2 ETKİNLİK ÇÖZÜMLERİ
8. 1 + 1 = 4 + 3 = 7 1 - 7 = 5 x + 2x + 1 2x – x – 6 Çarpanlara Ayırma (syf: 211)
3 4 12 12 12 12 12 9x + 6x + 1 4x – y 2
2
2
Sarı = 4 Mavi = 3 Beyaz = 5 1. 4 · (x + 2y) 3 (x + 2y) 4 (2x – y)
4. x · (2x + 3) = 2x + 3x
2
Toplam kütle = 1 . 4 + 2 . 3 + 3 . 5 x(x + 6) 4a (a + 1) m (m – n)
x . (2x + 1) = 2x + x 2 2a (a + 4)
2
= 4 + 6 + 15 = 25 2 4x (2x + 1) 2x (x + 1)
(x + 1) . (x + 1) = x + 2x + 1 2 (x + x + 3) x (x + x + 1) a (–a + 2)
2
2
9. olasılık= 2 = 1 (x + 1) . (x + 2) = x + 3x + 2
2
6 3 2x . (x + 1) = 2x + 2x
2
10. 1 lira 50 kuruş 1 $ + 1 x 4 $ = 30 2 2.
x
x x 4 2 (x + 1) . (x + 3) = x + 4x + 3 2a – 8 2(a – 4)
3x = 30 50 kuruş sayısı = 4 . 10 = 40 3a + 3a 3a(a + 1)
2
tane, x = 10 5. (2x + 3) · x 2x + 3x 3 2
2
CEBİRSEL İFADELER ve ÖZDEŞLİKLER 2x · (x + 5) 2x + 10x a – a a(a – 1)
2
2
Cebirsel İfadeleri Farklı Biçimlerde Yazma 2 4a + 4a 4a(a + 1)
(syf:193) 3x · (2x – 1) 6x – 3x a – a 2 a(1 – a)
2
1. 3x + 5 2x · (3x – 1) 6x – 2x 2a – 6a 2a(a – 3)
2
(x + 2)(x – 1) x + x – 2
2
6x – 4 3.
3x + 5x 6. 6x, 1, 8m², 16n² 6 (x + 3)
2
2
(x – 5) · 4 7. 2x – 72 (x + 4) (x + 3)
3x + 10 Özdeşlikleri Modelleme (syf:205) (m + 4n) (a – 2)
x + y 1. 4. (x + 1) = (x + 1) (x + 1)
2
Ö D D 2
2
3x – 1 (m + n) = (m + n) (m + n)
Ö Ö D (2y + 1) = (2y + 1) (2y + 1)
2
2
x + y 2
2
Ö Ö Ö (x – 2) = (x – 2) . (x – 2)
2. x 3x ve 6 3, 6 6 2 (p – k) = (p – k) . (p – k)
2
Ö D Ö
2
x x ve 3 –2, 3 3 2 (a – 2) = (a – 2) . (a – 2)
2. 8 –1 4
2
x, y 8x ve 3y 8, 3 – 2 (a + 3) = (a + 3) . (a + 3)
2
x, y 3x, –5y, –2 3, –5, –2 –2 3 +6M 4n² y² (3n + m) = (3n + m) (3n + m)
2
m, n 6m, –3n, 7 6, –3, 7 7 3 2ab 12x 4m² (a – 4) = (a – 4) . (a – 4)
(2m – 5) = (2m – 5) . (2m – 5)
2
k, y 3k ve –5y 3, –5 – 2
3. a + 8a + 16 5. (x – y)· (x + y)
2
x x², –6x, – 10 1, –6, –10 –10 3 2 (m – 4) . (m + 4)
3. x + 4x + 4
2
5x + 11 6x – 1 9x + 12x + 4 (a – 1) . (a + 1)
(3x – 2) . (3x + 2)
2
9x – 1 3x + 7 x + 12x + 36 (12 – a) . (12 + a)
2
2y + 8 –6x + 11 a – 6a + 9 (x + 4) . (x – 4)
2
3m + 3 21n – 12 x – 10x + 25 (2a + 5) . (2a – 5)
2
7m – 7 3k + 2x – 10 16x – 16x + 4 (x + 2y) . (x – 2y)
2
4. 4x cm, (8x + 2) cm, (3x + 19) cm, 4m – 12mn + 9n 2 (4a + 10) . (4a – 10)
(11x + 12) cm (a – b) · (a + b) (14 + m) . (14 – m)
(a + 3) . (a – 3)
5. 10 55 (x + 8) . (x – 8) (4x + 5) . (4x – 5)
(2x + 3) . (2x – 3)
8 30 (a + 2b ) . (a – 2b)
(3m + 4n) . (3m – 4n) (5m + 1) . (5m – 1)
10 31 4. (a + 3) = a + 6a + 9 (1 + k) . (1 – k)
2
2
74 18
425